SPATIAL ANALYSIS AND FORECASTING

August 2024

ABOUT ME...

Angela Backer-Hines

Analyst since 2005; have worked at task forces, state fusion center, city and county law enforcement agencies

Master's Degree in Criminal Behavior from Tiffin University CLEA since 2012 CICA since 2017, Lifetime CICA in 2022

Currently work for the Eagan Police Department in MN

On the training and certification committees, and an instructor for the IACA and Arizona State University's Crime Analysis Masters Program.

abhines@cityofeagan.com

SPATIAL ANALYSIS AND PREDICTION

Cluster Methods

- Geographic Profiling
 Mean Distance
- Repeat/ Near-Repeat

Moving Trends

• Space/Time Patterns

REMINDERS

• These specific techniques are best applied to series predictions.

 Calculations for overall patterns and trends utilize different spatial analysis techniques (hotspot tools: 80/20, density-based clustering, emerging hotspot, and other techniques like RTM, etc.)

CLUSTER METHODS

984 + X9

22

C(x, Y)

Var Be = x hx

AC,

24 + x + 2 + 32

men = PRI _ ... av

25+40

* 923+1

- Predicting where your serial offender lives.
- Using mapping and calculations.
- Using the spatial mean of the crime locations, you can predict where the offender lives within 2 blocks with 90% accuracy (if they live in the city – otherwise could indicate another node of frequent activity)

NEXT LOCATION

- Predicting the next incident in a series
- Using mapping and calculations
 - Use the same map/graph and calculate the standard deviation of the points to identify the target area.

NEXT LOCATION

Lat(Y)	Long(X)			
41.98533	-91.6426			
41.98343	-91.6469			
41.983	-91.6377			
41.97938	-91.6493			
41.97892	-91.6388			
41.98606	-91.6401			
41.98546	-91.6466			
41.98181	-91.6507			

	Lat(Y)	Long(X)
	41.98533	-91.6426
	41.98343	-91.6469
	41.983	-91.6377
	41.97938	-91.6493
	41.97892	-91.6388
	41.98606	-91.6401
	41.98546	-91.6466
	41.98181	-91.6507
Average	41.98292	-91.6441
Std Dev	0.002728	0.004969

Prediction Point 1	41.98565	-91.6391
Prediction Point 2	41.98565	-91.6491
Prediction Point 3	41.9802	-91.6391
Prediction Point 4	41.9802	-91.6491

MEAN DISTANCES

MEAN SPIDER DISTANCE

- The distance of each crime from the arithmetic center of the series (basically the mean).
- Calculate the standard deviation of the mean and that is your spatial prediction for your next event.

 ★ ★ 	4 Y mm
Distance to the Mean Ft	Distance to the Mean Mi
560	0.106060606
775	0.146780303
1742	0.329924242
1921.9	0.363996212
2059	0.389962121
1573	0.297916667
1160	0.21969697
1832	0.346969697
1452.8625	0.275163352

MEAN SEQUENCE DISTANCE

- Measures the distance from each crime to the next crime.
- Plots the mean and standard deviation to determine the next likely distance to the predicted event *from the last event*.

	at 10 0.0						
			J	PARKA	WE SE		
	Distance from Last Ft	Distance f	rom Last Mi		mana hi		
03				3	51 50 51	21ST 8	
03	1346.31		0.254982784		S DEV	ERAVE SE	
403	2509.63		0.47530921		and in an	AVE SE	
IA 52403	3441.52		0.651802246			•	
IA 52403	2869.72		0.543507186	M distance	. m. M.A	V distance m	CTD dictoree m
03	2625.00		0.497159107	IN_UIStatice	IVI74	w_ustance_iii	STD_UIStance_III
ids, IA 52403	1786.21		0.33829723	410.3554	489	1048.974728	225.130984
403	1726.74		0.327034504	CONTRACTOR NO.	RIDO	1000	
MEAN	2329.30388		0.441156038	Charles States	10 SE		
STD DEV	738.6167844		0.139889543	and the state		E State	
		AMB	1.1	HIGLEY	AVESE	GREENWOOD	
	✓	4	91.6560172°	₩ 41.9817950°N 🗸			
	DIST 🛄 Serie	s_OriginDestina SUM	I LINK_DIST	ginDestina MEAN LINK_D	IST 📰 Series	_OriginDestinationLi	
	tion: 🔓 Select By	Attributes 🕀 Zoom	To 📲 Switch 📃 Clear 💂 D	elete 🗐 Copy			
	Start Date Start I	Date (string) End	d Date End Date (string)	Time Delta (seconds) Tim	me Delta (minutes)	Distance (meters)	
	3/5/2024 2024-0	03-05 12:00:00 AM 3/7	7/2024 2024-03-07 12:00:00 AM	172800	2880	410.355489	
	3/7/2024 2024-0	03-07 12:00:00 AM 3/8	3/2024 2024-03-08 12:00:00 AM	86400	1440	764.936162	
	3/8/2024 2024-0	03-08 12:00:00 AM 3/1	0/2024 2024-03-10 12:00:00 AM	172800	2880	1048.974728	
	3/10/2024 2024-	03-10 12:00:00 AM 3/1	4/2024 2024-03-14 12:00:00 AM	345600	5760	874.6906	
	3/14/2024 2024-	03-14 12:00:00 AM 3/1	6/2024 2024-03-16 12:00:00 AM	172800	2880	800.106986	
	3/16/2024 2024-0	03-16 12:00:00 AM 3/1	7/2024 2024-03-17 12:00:00 AM	86400	1440	544.436686	
	3/17/2024 2024-	03-17 12:00:00 AM 3/1	9/2024 2024-03-19 12:00:00 AM	172800	2880	526.311102	

REPEAT/NEAR-REPEAT

NEAR-REPEAT ANALYSIS AND AVERAGE NEAREST NEIGHBOR

- A way to identify 'clustering' in a crime series or offender pattern of behavior.
- Looking at a pattern of repeat or near-repeat incidents within the series to predict the next hit within a certain timeframe within a certain distance of another recent incident (originator).

Repeat and Near Repeat Classification	A Repeat and Near Repeat tool that uses a series of distance and time values to classify incidents as originators, repeats, or near repeats, and to identify potential spatial and temporal relationships between incidents.

😬 Near Repeat Calculator	$ \sim$ \times	
The data 1. First click this button to open a data file Open data file ? Filename: <no data<="" td=""> Records: <no data<="" td=""></no></no>	ta> ta>	
Latest date: <no da<br="">Latest date: <no da<="" td=""><td>Near Repeat Calculator —</td><td></td></no></no>	Near Repeat Calculator —	
The parameters 2. Select program parameters Spatial bandwidth: How many spatial bands? ?	The data 1. First click this button to open a data file Open data file ? Filename: SeriesNN.csv Records: 8 Earliest date: 3/5/2024 Latest date: 3/19/2024	کی TT
Significance level: O p=0.05 O p=0.01 O p=0.001	The parameters	
Settings Actions Manhattan ? Euclidean Start the analysis www.jratcliffe.net Version 2.0	2. Select program parameters Spatial bandwidth: 500 How many spatial bands? 3 ? How many temporal bands?	days ?
	Significance level: p=0.05 p=0.01 p=0.001 Iterations: 20 More iterations processing	= longer time
	Settings Actions Image: Manhattan Image: Actions Image: Euclidean Image: Actions Image: Www.jratcliffe.net Version 2.0	F manual program

_

Summary

No indication of near repeat victimization over-representation found.

This means that near repeats do not appear to cluster in a statistical and meaningful way after a prior event.

No indication of repeat victimization over-representation found.

This means that repeat victimization does not appear to cluster in a statistical and influential way immediately after a prior event.

Statistics

The following tables provide detailed findings.

This color indicates that the statistical probability is at the best possible level for your chosen number of iterations. As you chose 20 iterations, it indicates that the statistical probability is at p=0.05.

Observed over mean expected frequencies table

	Same day	>0 to 3 days	>3 to 6 days	>6 to 9 days	>9 days
Same location	0	0	0	0	0
>0 to 500 feet	0	10	5	7	6
>500 to 1000 feet	0	0	0	0	0
>1000 to 1500 feet	0	0	0	0	0
More than 1500 feet	0	0	0	0	0

	Same day	>0 to 3 days	>3 to 6 days	>6 to 9 days	>9 days
Same location	NaN	NaN	NaN	NaN	NaN
>0 to 500 feet	NaN	1.00	1.00	1.00	1.00
>500 to 1000 feet	NaN	NaN	NaN	NaN	NaN
>1000 to 1500 feet	NaN	NaN	NaN	NaN	NaN
More than 1500 feet	NaN	NaN	NaN	NaN	NaN

Statistical significance table

	Same day	>0 to 3 days	>3 to 6 days	>6 to 9 days	>9 days
Same location	1.00	1.00	1.00	1.00	1.00
>0 to 500 feet	1.00	1.00	1.00	1.00	1.00
>500 to 1000 feet	1.00	1.00	1.00	1.00	1.00
>1000 to 1500 feet	1.00	1.00	1.00	1.00	1.00
More than 1500 feet	1.00	1.00	1.00	1.00	1.00

Parameters used

Iterations requested: 19 Spatial bandwidth: 500 Number of spatial bands: 3 Temporal bandwidth: 3 Number of temporal bands: 3

Average Nearest Neighbor Summary

Observed Mean Distance	292.331605
Expected Mean Distance	162.569805
Nearest Neighbor Ratio	1.798191
z-score	4.318997
p-value	0.000016

Distance measured in meters

Mean Spider Distance: 1453 ft Mean Sequence Distance: 2329 ft Nearest Neighbor Mean: 959 ft

MOVING TRENDS

2)

18590(

GEOGRAPHIC PROGRESSION

- Relationship between geography and time.
- As time increases how does distance change?
 - Is the offender moving further away from their central node over time? Closer?

Series	CN	Date	Time	Start time	DOW	Lat(Y)	Long(X)	Distance to the Mean Ft	Distance to the Mean Mi
1	24-1234	3/5/2024	0000 - 0330	0	Tue	41.98532817	-91.64261246	560	0.106060606
2	24-1235	3/7/2024	0000 - 0345	0	Thu	41.98343175	-91.64686205	775	0.146780303
3	24-1236	3/8/2024	0110 - 0330	1	Fri	41.98545649	-91.64664878	1160	0.21969697
4	24-1237	3/10/2024	0230 - 0400	2.5	Sun	41.98605771	-91.64012856	1573	0.297916667
5	24-1238	3/14/2024	0230 - 0400	2.5	Thu	41.98299695	-91.63765019	1742	0.329924242
6	24-1239	3/16/2024	0300 - 0500	3	Sat	41.98181186	-91.65070732	1832	0.346969697
7	24-1240	3/17/2024	0330 - 0500	3.5	Sun	41.97938207	-91.64934355	1921.9	0.363996212
8	24-1241	3/19/2024	0400 - 0530	4	Tue	41.97892201	-91.63880759	2059	0.389962121
9					Average	41.98292338	-91.64409506	1452.8625	0.275163352
					Std Dev	0.002727501	0.004969497	556.9876965	0.105490094

Correlation Coefficient	0.984793269	
Forecast of next distance	2439.246429	Ft
Forecast of next distance	0.46197849	Mi

Next incident 0.46 +/- 0.11 miles from the spatial mean. Or between 0.36 and 0.58 miles from the spatial mean.

SPACE/TIME PATTERNS

- If none of the other calculations make sense...
- Is there another pattern at play?
 - Moving North to South?
 - East to West?
 - Traveling along a major highway?
 - Going in a loop?
 - Hitting North side of the city on certain days then South side on other days?

REFERENCES

Geographic Profiling –

https://geographicprofiling.com/GPAtraining/Geographic%20Profiling%20for%20Crime%20Analysts.pdf https://www.ojp.gov/ncjrs/virtual-library/abstracts/geographic-profiling-new-tool-crime-analysts

Near Repeat Analysis – https://www.jratcliffe.net/near-repeat-analysis https://www.policinginstitute.org/wp-content/uploads/2018/07/REVISED-FINAL-Strategy-Brief_12.6.pdf

Near Repeat Calculator -

https://www.jratcliffe.net/_files/archives/f5df24_bdc7db27272445d6b6c6dc2b7ce54849.zip?dn=NRCv2set up.zip

IACA (2017). Exploring Crime Analysis: Readings on Essential Skills (3rd ed.). International Association of Crime Analysts.

FUTURE CLASSES IN THE TACTICAL SERIES

CRIMINAL BEHAVIOR AND TACTICAL PROFILING PRODUCTS AND DISSEMINATION EFFECTIVE RESPONSE

Angela Backer-Hines Eagan Police Department abhines@cityofeagan.com

QUESTIONS?